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Abstract: Introduction: In recent years, artificial intelligence (AI) has emerged as a transformative tool
for enhancing stroke diagnosis, aiding treatment decision making, and improving overall patient care.
Leading AI-driven platforms such as RapidAI, Brainomix®, and Viz.ai have been developed to assist
healthcare professionals in the swift and accurate assessment of stroke patients. Methods: Following
the PRISMA guidelines, a comprehensive systematic review was conducted using PubMed, Embase,
Web of Science, and Scopus. Characteristic descriptive measures were gathered as appropriate from
all included studies, including the sensitivity, specificity, accuracy, and comparison of the available
tools. Results: A total of 31 studies were included, of which 29 studies focused on detecting acute
ischemic stroke (AIS) or large vessel occlusions (LVOs), and 2 studies focused on hemorrhagic strokes.
The four main tools used were Viz.ai, RapidAI, Brainomix®, and deep learning modules. Conclusions:
AI tools in the treatment of stroke have demonstrated usefulness for diagnosing different stroke types,
providing high levels of accuracy and helping to make quicker and more precise clinical judgments.

Keywords: acute ischemic stroke; hemorrhagic stroke; large vessel occlusion; artificial intelligence;
deep learning; automated detection

1. Introduction

Stroke is the second leading cause of death in the world, being responsible for more
than 5.5 million deaths every year, and the leading cause of disability among patients [1,2].
The mortality rate of stroke remains a constant concern for patients and healthcare providers
as it equates to roughly 10% during the first 30 days following an ischemic stroke, rising
to 40% by the end of the first year [3]. Developing technology to provide accurate and
reliable diagnoses to detect strokes and ultimately improve patient outcomes is necessary.
Technologies such as CT scans and MRIs are essential, but interpretation by an experienced
neuroradiologist may not be an option in hospitals in rural areas, which necessitates a
more automated readily available AI tool to aid in this regard. In recent years, AI has
played a significant role in transforming the care of stroke patients [4]. With the help of
AI platforms such as RapidAI, Brainomix®, and Viz.ai, physicians can detect patients with
stroke more efficiently and accurately. Additionally, it has facilitated better decision making
and efficiency, leading to improved patient outcomes [5]. AI platforms and tools such as
RapidAI, Brainomix®, and Viz.ai have significantly impacted the field. They will continue

Brain Sci. 2024, 14, 1182. https://doi.org/10.3390/brainsci14121182 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14121182
https://doi.org/10.3390/brainsci14121182
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-2208-4308
https://orcid.org/0000-0002-0433-2788
https://orcid.org/0000-0001-5629-3023
https://doi.org/10.3390/brainsci14121182
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14121182?type=check_update&version=1


Brain Sci. 2024, 14, 1182 2 of 11

to play a transformative role in assisting medical professionals to improve decision making
and the management of patients with stroke.

The three platforms, RapidAI, Brainomix®, and Viz.ai, bring unique technology and
abilities to improve stroke detection. Firstly, RapidAI, developed by iSchemaView, has
improved the field with advanced imaging software capable of instantly processing CT and
MRI data. Moreover, their algorithms provide computerized maps of several parameters,
including mean transit time, cerebral blood volume, and flow. These variables play a
vital role in detecting and recognizing the penumbra (possibly recoverable tissue) and
the ischemic core (irreversibly damaged tissue), allowing physicians to make decisions
quickly during the acute stage of managing a stroke [6–8]. Secondly, Brainomix® provides
automated medical software to detect stroke. With the help of specific tools such as e-
ASPECTS, the software can automatically evaluate CT scans without contrast to detect
any initial ischemic changes [9,10]. Additionally, it improves evaluating thrombectomy
eligibility by allowing healthcare providers to detect LVOs with CT angiography and
providing CT perfusion analysis [10]. Lastly, Viz.ai utilizes deep learning algorithms to
provide quick and improved detection of strokes while also providing LVO detection by
utilizing CT angiography. Its quick and efficient detection platform, paired with user-
friendly features, provides healthcare providers with easy communication and reduced
time in manual detection [11].

AI is used in stroke solutions through platforms like RapidAI, Brainomix®, and
Viz.ai and has provided healthcare providers with an efficient and improved method of
detecting strokes and appropriate acute ischemic stroke management [12]. Additionally,
these platforms have improved decision making over shorter periods and improved the
efficiency and accuracy of detection, contributing to an overall improvement in patient
outcomes [13]. As AI platforms continue to significantly improve stroke detection, they
improve detection, accuracy, accessibility, and personalized treatment for patients. The
further development of AI platforms will play a pivotal role in transforming the care of
stroke patients by reducing mortality and improving quality of life.

2. Methods
2.1. Search Strategy

A literature review was conducted within the Nested Knowledge Autolit software
version 1.46 (Nested Knowledge, Saint Paul, MN, USA), using PubMed, Embase, and
Scopus. The search was conducted from the inception of the database until 30 June 2024.
Based on each database, different combinations of possible keywords and/or Medical
Subject Headings terms were used for that purpose.

Keywords and Medical Subject Headings terms included stroke, artificial intelligence,
machine learning, deep learning, Viz.ai, RapidAI, and Brainomix®, besides others. The
entire search strategy is provided in Supplement Table S1. An extensive manual search was
performed through the references of the articles included to retrieve any missed papers.
This study is conducted following the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) reporting guidelines (see Figure 1).

2.2. Screening Process

We included all original studies fulfilling our population, exposure, and outcome
criteria, which totaled 31 studies (primarily retrospective cohort studies and one prospective
study, one clinical trial, and one quality improvement study). We excluded studies if they
met any of the following exclusion criteria:

Conference, duplicate, and irrelevant papers.
Reviews and meta-analyses.
Animal or pre-clinical studies.
Non-stroke AI applications.
Semi-automated applications.
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Figure 1. PRISMA flowchart detailing the literature review process. * Consider, if feasible to do so, 
reporting the number of records identified from each database or register searched (rather than the 
total number across all databases/registers). ** If automation tools were used, indicate how many 
records were excluded by a human and how many were excluded by automation tools. Source: 
Page MJ et al. [14].  
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Figure 1. PRISMA flowchart detailing the literature review process. * Consider, if feasible to do so,
reporting the number of records identified from each database or register searched (rather than the
total number across all databases/registers). ** If automation tools were used, indicate how many
records were excluded by a human and how many were excluded by automation tools. Source: Page
MJ et al. [14].

2.3. Data Extraction

Following a pilot extraction, an extraction sheet was built, and the extraction was
performed by 3 authors (TE., YM., and OA.). The extracted data included study char-
acteristics and types of AI stroke applications together with sensitivity, specificity, and
accuracy data for each AI stroke application as available. After performing the extraction,
OA. and YM. conducted an extensive revision of the extracted data to avoid any mistakes
or duplicate data.

3. Results

We included 31 studies, of which 29 discussed the use of stroke AI applications for
detecting acute ischemic stroke (AIS), and two discussed the use of AI applications in
hemorrhagic strokes. AI applications included mainly Viz.ai, Brainomix®, and RapidAI,
among others. Refer to Table 1 for details.
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Table 1. Main characteristics and outcome measures of the included studies.

Author(s) and
Year

Study
Design/Type AI Tool Sensitivity Specificity Accuracy Door-to-

Needle Time
Sample

Size

Weyland et al.,
2022 [15]

Retrospective
Cohort Study Brainomix®

0.77
(Software),

0.80 (Reader
1), 0.93

(Reader 2)

0.87
(Software),

0.97 (Reader
1), 0.71

(Reader 2)

N/A N/A 154

Fasen et al.,
2022 [16]

Retrospective
Cohort Study StrokeViewer

77.3% (AI),
78.7%

(Manual)

88.5% (AI),
100%

(Manual)
N/A N/A 474

Gunda et al.,
2022 [17]

Retrospective
Cohort Study e-Stroke Suite N/A N/A N/A 42 min (2018),

44 min (2017) 797

Schmitt et al.,
2022 [18]

Retrospective
Cohort Study Brainomix® 0.91 (ICH),

0.98 (IPH)
0.89 (ICH),
0.89 (IPH) N/A N/A 160

Seker et al.,
2022 [19]

Retrospective
Cohort Study e-CTA 0.84 0.96 0.89 N/A 301

Hassan et al.,
2020 [20]

Retrospective
Cohort Study Viz.ai LVO N/A N/A N/A

110 min
(post-AI),
132.5 min
(pre-AI)

43

Martinez-
Gutierrez et al.,

2023 [21]

Cluster
Randomized
Clinical Trial

Viz.ai N/A N/A N/A

100 min
(pre-AI),
88 min

(post-AI)

243

Delora et al.,
2024 [22]

Retrospective
Cohort Study

Viz LVO,
Rapid LVO 0.87 (both) 0.96 (Viz),

0.85 (Rapid) N/A N/A 360

Mair et al.,
2023 [10]

Retrospective
Cohort Study e-CTA 0.72 0.72 0.72 N/A 668

Figurelle et al.,
2023 [23]

Quality Im-
provement
Initiative

Viz.ai N/A N/A N/A N/A 82

Karamchandani
et al., 2023 [11]

Retrospective
Cohort Study Viz.ai LVO 78.20% 97% 95.90% N/A 3851

Mallon et al.,
2022 [24]

Retrospective
Cohort Study

Brainomix®,
RapidAI

N/A N/A

77%
(Brainomix®),

71%
(RapidAI)

N/A 90

Alwood et al.,
2024 [25]

Multicenter
Comparison

Viz.ai,
RAPID.AI N/A N/A N/A N/A 362

Scavasine et al.,
2024 [26]

Retrospective
Cohort Study e-CTA N/A N/A N/A N/A 97

Mallon et al.,
2023 [27]

Prospective
Evaluation

Study

Brainomix
e-Stroke

e-ASPECTS:
58.6%

e-ASPECTS:
83.5%

e-ASPECTS:
77.0% N/A 551

Vacek et al.,
2024 [28]

Retrospective
Cohort Study

Brainomix
e-ASPECTS N/A N/A

Excellent/
Good: 71%,
Moderate/
Poor: 29%

N/A 628

Chan et al.,
2022 [29]

Retrospective
Cohort Study

RAPID
ASPECTS,

RAPID CTA

RAPID
ASPECTS:

87.5%,
RAPID CTA:

92.3%

RAPID
ASPECTS:

30.9%,
RAPID CTA:

85.3%

RAPID
ASPECTS:
51.1% false
positives

N/A 104



Brain Sci. 2024, 14, 1182 5 of 11

Table 1. Cont.

Author(s) and
Year

Study
Design/Type AI Tool Sensitivity Specificity Accuracy Door-to-

Needle Time
Sample

Size

Mohapatra
et al., 2023 [30]

Retrospective
Cohort Study VGG16 CNN N/A N/A 95.60% N/A 517

Soun et al.,
2023 [31]

Retrospective
Cohort Study RAPID LVO 0.96 0.85 N/A N/A

760
(Pre-AI: 439,

Post-AI:
321)

Lee et al.,
2023 [32]

Clinical
Validation

Trial

Heuron
ASPECTS

62.78% (ROI),
94.01% (>4 vs.
≤4), 95.42%
(>6 vs. ≤6)

96.63% (ROI),
61.90% (>4 vs.
≤4), 76.56%
(>6 vs. ≤6)

N/A N/A 326

Chen et al.,
2022 [33]

Multicenter
Study

Deep
Learning

Model

0.333 (with
AI)

0.915 (with
AI) N/A N/A

1476 (1391
develop-
ment, 85

validation)

Reidler et al.,
2021 [34]

Retrospective
Cohort Study

Automated
Attenuation

Measure-
ments

0.87–0.91 0.97–0.99 N/A N/A 145

Stib et al.,
2020 [35]

Multicenter
Retrospec-
tive Study

Convolutional
Neuronal
Network

1.00 0.77 N/A N/A 540

Yahav-Dovrat
et al., 2021 [36]

Retrospective
Study Viz LVO

0.81 (Overall),
0.82 (Stroke

protocol)
N/A

0.94 (Overall),
0.89 (Stroke

protocol)
N/A 1167

Schlossman
et al., 2022 [37]

Retrospective
Single-

Center Study

RAPID LVO,
CINA LVO

RAPID: 0.90,
CINA: 0.76

RAPID: 0.86,
CINA: 0.98

RAPID: 0.86,
CINA: 0.96 N/A 263

Hoelter et al.,
2020 [38]

Retrospective
Study

Syngo.via,
Brainomix®,

RAPID

Syngo.via:
0.801,

Brainomix®:
0.871, RAPID:

0.777

N/A N/A N/A 131

Sawicki et al.,
2021 [39]

Retrospective
Cohort Study e-CTA

67%
(Overall),

84%
(Proximal),

36% (Distal)

95% 77% N/A 108

Slater et al.,
2024 [40]

Retrospective
Study RapidAI

LVO: 0.62,
LVO/MVO:

0.39

LVO: 0.93,
LVO/MVO:

0.92

LVO: 8.49,
LVO/MVO:

5.0
N/A 500

Bushnaq et al.,
2024 [41]

Retrospective
Multicenter

Study

RapidAI,
Viz.ai N/A N/A N/A N/A 129

Pisani et al.,
2023 [42]

Retrospective
Multicenter

Study

RAPID, Viz
CTP, e-CTP N/A N/A N/A N/A 242

Shahrouki
et al., 2023 [43]

Retrospective
Multicenter

Study

e-Stroke Suite
(Brainomix®) N/A N/A N/A N/A 111
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3.1. Viz.ai

Multiple studies discussed the use of Viz.ai in stroke management. In a study by
Hassan et al. [13], implementing Viz.ai to detect LVOs significantly reduced door-to-needle
time from 132.5 min to 110 min, highlighting its impact on treatment timelines in LVO cases
involving 43 patients. Martinez-Gutierrez et al. [21] reported a reduction in door-to-groin
puncture time from 100 min to 88 min with AI-enabled LVO detection, emphasizing its
efficiency in a cluster randomized clinical trial with 243 patients.

In addition, Figurelle et al. [23] found that Viz.ai improved door-to-groin time, show-
casing its potential to enhance procedural efficiency in an initiative involving 82 patients.
Karamchandani et al. [11] demonstrated high specificity (0.97) and moderate sensitivity
(0.782) for Viz.ai LVOs, with an AUC of 0.88 and overall accuracy of 0.959 in detecting
LVOs among 3851 patients.

Of note, Alwood et al. [25] compared Viz.ai with RapidAI, noting that Viz.ai provided
larger core (25.9 cc) and penumbra (102.4 cc) estimates, underscoring its precision in
362 patients.

Finally, Bushnaq et al. [41] found that Viz.ai accurately predicted higher ischemic
core volumes, comparable to RapidAI, in a retrospective multicenter study involving
129 patients.

Overall, Viz.ai has proven to be a valuable tool in stroke management, enhancing
diagnostic accuracy, reducing treatment times, and improving clinical decision-making
processes, thereby contributing to better patient outcomes.

3.2. RapidAI

RapidAI implementation in stroke studies has shown considerable advancements
in diagnostic accuracy and clinical efficiency. In the study by Delora et al. [22], RapidAI
demonstrated a sensitivity of 87% for detecting large vessel occlusions, comparable to Viz
LVO, which had a specificity of 94%, effectively aiding in accurate occlusion identification
in 360 patients.

In addition, Mallon et al. [24] compared Brainomix® and RapidAI, finding that Rap-
idAI accurately estimated ischemic core and penumbra volumes, with 22 mL for the core
and 49 mL for the penumbra, across 90 patients. Alwood et al. [25] noted that RapidAI esti-
mated core volumes at 18.2 cc and penumbra volumes at 84.6 cc, highlighting its precision
in LVO cases involving 362 patients.

Of note, Chan et al. [33] reported high sensitivity for RAPID ASPECTS (87.5%) and
RAPID CTA (92.3%), contributing to improved stroke assessment in 104 patients. Soun
et al. [31] observed that implementing RAPID LVO significantly enhanced radiology work-
flow efficiency and accuracy in detecting acute ischemic stroke, with 96% sensitivity in a
cohort of 760 patients. Schlossman et al. [37] found that RAPID LVO had higher sensitivity
compared to CINA LVO, emphasizing its reliability in large vessel occlusion diagnosis in
263 patients.

Hoelter et al. [38] demonstrated that RapidAI, along with Syngo.via and Brainomix®,
provided robust performance in AIS assessment, with a combined sensitivity of 0.777 and
specificity of 0.734 across 131 patients. Similarly, Slater et al. [40] confirmed that experienced
readers using RapidAI achieved higher sensitivity and specificity, reinforcing its diagnos-
tic value in 500 patients. Bushnaq et al. [41] showed that RapidAI predicted ischemic
core volumes with high accuracy, comparable to Viz.ai, in a multicenter study involving
129 patients. Finally, Pisani et al. [42] observed substantial agreement among RapidAI, Viz
CTP, and e-CTP, underscoring its reliability in AIS management in 242 patients.

Overall, RapidAI has proven to be a critical tool in the diagnosis of stroke, providing
high sensitivity and specificity, improving workflow efficiency, and ensuring accurate
assessment of ischemic core and penumbra volumes.
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3.3. Brainomix®

Several studies discussed the efficacy of Brainomix® in enhancing diagnostic preci-
sion and improving patient outcomes. For instance, the research conducted by Weyland
et al. [15] demonstrated Brainomix®‘s ability to detect hyperdense artery signs (HASs) in
acute ischemic stroke (AIS) with a sensitivity of 0.77, 0.80, and 0.93 for software, reader
1, and reader 2, respectively, and specificity of 0.87, 0.97, and 0.71 for software, reader 1,
and reader 2, respectively. This resulted in an AUC of 0.85 for software, 0.88 for reader
1, and 0.83 for reader 2, aiding in the automated detection and estimation of thrombus
burden in 154 patients. In their research, Schmitt et al. [18] examined 160 patients and
discovered that Brainomix® effectively evaluated intracranial hemorrhage (ICH) with a
sensitivity of 0.91 and specificity of 0.89, delivering precise diagnoses. They also found a
sensitivity of 0.98 and a specificity of 0.89 for intraparenchymal hemorrhage (IPH). Mallon
et al. [24] found that Brainomix® and RapidAI combined showed improved accuracy in
identifying ischemic stroke, 77% versus RapidAI’s 71%, in a study of 90 patients. In a
prospective evaluation by Mallon et al. [27], Brainomix® e-Stroke achieved a sensitivity of
58.6%, a specificity of 83.5% and accuracy of 77% for acute ischemic stroke, with strong
correlations in the perfusion data for both core and penumbra regions, enhancing rapid and
reliable diagnosis in 551 patients. Vacek et al. [28] highlighted the efficacy of Brainomix®

e-ASPECTS in delineating ICH, with 71% of cases rated as excellent or good in a cohort
of 628 patients. A comparative study by Hoelter et al. [38] found that Brainomix® had a
sensitivity of 0.871 and specificity of 0.759, outperforming other tools like Syngo.via and
RapidAI in assessing acute ischemic stroke in 131 patients.

Finally, in a retrospective study involving multiple centers led by Shahrouki et al. [43],
the e-Stroke Suite (Brainomix®) was shown to accurately estimate ischemic core volumes on
both non-contrast CT (NCCT) and CT perfusion (CTP), with average volumes of 20.4 mL
and 19.9 mL, respectively, in 111 patients. In general, Brainomix® has demonstrated its
worth as a valuable tool for diagnosing different stroke types, providing high levels of
accuracy, and helping to make quicker and more precise clinical judgments.

3.4. Deep Learning

The study by Chen et al. [33] demonstrated promising advancements in diagnostic
accuracy by using deep learning models in stroke care. This study, conducted at multiple
centers, concentrated on AIS and included 1476 patients, with 1391 in the development
group and 85 in the validation group. When combined with conventional diagnostic
methods, the deep learning model showed a sensitivity of 0.333 and a strong specificity
of 0.915.

The model’s accuracy, assessed through the area under the curve (AUC), reached
0.876 internally and 0.729 externally, demonstrating consistent performance across various
datasets. Even with lower sensitivity, the deep learning model is highly specific, indicating
its effectiveness in accurately detecting non-stroke instances and decreasing false positives.

To date, research has found that the deep learning model greatly improves diagnostic
capabilities for emergency doctors, helping them identify acute ischemic strokes accurately
and efficiently. The enhanced diagnostic abilities highlight the potential of deep learning
models to aid in clinical decision making and enhance patient outcomes in stroke treatment.

4. Discussion

While no amount of technology can truly replace a practicing physician in assessing
patient symptoms and integrating the clinical context with appropriate management,
artificial intelligence has proven beneficial in supplementing the delivery of quality stroke
care to patients in the acute setting. The AI platforms summarized in this report, namely
RapidAI, Brainomix®, and Viz.ai, provide unique technology that providers can use to
assess stroke cases in a timely manner. There is not a great deal of data on the impact of
these AI systems in the real-world management of acute stroke patients given that they are
new and have mostly demonstrated theoretical applications. This article summarizes the
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current data regarding how AI systems can improve stroke management and deliver the
best patient care in acute situations.

From the literature reviewed in this publication, it is clear that AI significantly im-
proves the efficiency of care for patients in the high-acuity setting of ischemic stroke. In
summary, the studies reviewed showed AI is able to significantly reduce door-to-needle
time due to the improved detection of LVOs and more accurately estimate penumbra and
infarct core volumes, enabling interventionalists to make a safer decision in relation to
thrombectomy and more sensitively detect hemorrhages that may otherwise be missed on
initial imaging.

While invaluable, traditional diagnostic imaging tools such as CT and MRI scans are
subject to high reader variability amongst neurologists, interventionalists, and radiologists.
Not only is the detection and characterization of the stroke necessary, but it must be realized
in a timely manner, given the acuity of ischemic strokes. With AI aiding in recognizing
early ischemic changes in imaging, clinicians can act faster. By creating a standardized
technological system for detecting LVOs, determining ASPECT scores and other useful
criteria for managing an acute stroke case, clinicians can be more reassured that they are
delivering the best possible patient care [18,20].

The rapid advancements in AI have significantly impacted the assessment and man-
agement of acute ischemic stroke. Numerous artificial intelligence technologies, including
Brainomix®, Viz.ai, and RapidAI, have shown an impressive ability in expediting the
stroke diagnostic and treatment process [41]. Similar to the Viz.ai system, RapidAI has
demonstrated remarkable performance, achieving 87% sensitivity in detecting large vessel
occlusions (LVOs). Furthermore, RapidAI accurately estimated ischemic core and penum-
bra volumes, with mean estimates of 22 mL for the core and 49 mL for the penumbra. In
the assessment of strokes, the RapidASPECTS and RapidCTA instruments also exhibited
high sensitivity, at 87.5% and 92.3%, respectively. RapidLVO’s implementation improved
radiology workflow accuracy and efficiency, resulting in a 96% sensitivity in identifying
acute ischemic stroke.

The limitations of this review include the lack of cost of implementation and its effect
on reducing cost for the patient and healthcare system in the setting of acute stroke manage-
ment. Also, this study did not include studies that explored AI in stroke rehabilitation and
long-term care. Finally, this study lacks longitudinal data to explore causality. Ultimately,
more data are required regarding how AI would affect real-world workflow and whether
the software constitutes more risk than benefit, as this information is limited. However, as
seen in the available literature reviewed thus far, AI proves promising as a valuable tool in
improving the management of acute ischemic stroke, ultimately optimizing patient out-
comes. The widespread adoption of these AI-based technologies has led to faster decision
making, reduced door-to-treatment times, and improved overall quality of care for patients
suffering from acute ischemic stroke. With AI tools becoming widely available, future
studies should focus on overcoming the challenges we are facing with the current tools
together with strategies to maximize their wider implementation in stroke care beyond the
acute stroke setting.

Supplementary Materials: The following supporting information can be downloaded at: https:
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